
Lecture Notes on Elliptic Systems of Phase
Transition type

Nicholas Alikakos (University of Athens , EKPA)

Festum π Conference in Chania, 2024

1



1 One dimensional solutions: Heteroclinic Connections

(1) u′′ −Wu(u) = 0 , u(±∞) = a± , a+ ̸= a−

a± ∈ A = {W = 0} , ♯A ≥ 2.

(2) J(s1,s2)(u) :=

∫ s2

s1

Å
1

2
|u′|2 +W (u)

ã
dx , J(u) = J(−∞,∞)(u)

Hypotheses

(H1) W ∈ C2 , c2|ξ|2 ≥ ξT∂2Wu(a)ξ ≥ c1|ξ|2 , a ∈ A

(H2) (a) lim inf
|u|→+∞

W (u) > 0 or the weaker

(b)
»

W (u) ≥ γ(|u|) , γ : (0,+∞) → R ,

∫ ∞

0

γ(r)dr = +∞ or the stronger

(c) Wu(u) · u > 0 if |u| > M.

Theorem 1.1. (Existence) Under (H1), (H2)(b), given a− ∈ A , ∃ a+ ∈ A \ {a−} and u
classical solution to

(3)
1

2
|u′|2 −W (u) = 0 (equipartition)

which minimizes J on

(4) A =

ß
u ∈ W 1,2

loc (R;R
m) | lim

x→−∞
u(x) = a− , lim

x→+∞
u(x) ∈ A \ {a−}

™
Note: (1) W (u(x)) > 0 , x ∈ R, by uniqueness for (3).

(2) If |A| is even ⇒ at least
|A|
2

connections. If |A| is odd ⇒ at least
|A|+ 1

2
connections.

Example 1.2. m = 1 , W (u) = 1
2
(u2 − 1)2, bistable

u(x) = tanhx , a± = ±1 , unique modulo translations
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Remark 1.3. Exercise 1 (m = 2 , g : (C,W (z)dzdz) → Euclidean Plane isometry).
Identify (u1, u2) with the complex number z = u1 + iu2 and write W (u1, u2) = |f(z)|2.
Assume f ′ = g is holomorphic in D, open in R2. Let u(x) a solution provided by Theorem
1.1.

Then

Im

Å
g(z)− g(a−)

g(a+)− g(a−)

ã
= 0 , for z ∈ Γ = {u(x) | x ∈ R}

Moreover the set g(Γ) = {g(z) | z ∈ Γ} is a line segment with end point g(a−) , g(a+) and∫ y

a

Å
1

2
|u′|2 +W (u)

ã
dx =

√
2

∫ y

a

| d
dx

g(u)|dx =
√
2|g(u(y))− g(a−)|

Remark 1.4. m ≥ 2, Non uniqueness is possible

Remark 1.5. Sufficient condition for existence of connection ai → aj , {W = 0} = {a1, ..., aN}

Let

(5) σij = inf
Aij

J(u) , Aij :=

ß
u ∈ W 1,2

loc (R;R
m) | lim

x→−∞
u(x) = ai , lim

x→+∞
u(x) = aj

™
i, j = 1, ..., N. Then the condition

(6) σij < σih + σhj ∀ah ∈ A \ {ai, aj} (Triangle Inequality)

(6) is sufficient for the existence of an orbit connecting ai to aj.
(For W (z) = |(z − z1)(z − z2)(z − z3)|2 it is also necessary.)

Proof of Theorem 1.1.
1. Removing noncompactness due to translations

choose r0 > 0 small such that

(7) min
a∈A , |u−a|<r0

W (u) = W0.
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∀ u(·) ∈ A , ∃ x0 such that W (u(x0)) = W0. Consider then the translates of u ∈ A with
W (u(0)) = W0. We restrict ourselves to this modified A , which we still denote by A .

2. A ̸= ∅. Indeed given a− consider the element ã ̸= a− in A closest to a−.
Let

ũ(x) = (1− (x+ x0))a
− + (x+ x0)ã

Choose x0 ∈ (0, 1) s.t. W (ũ(0)) = W0.
Let

(8) J(ũ) = σ

3. L∞ bound
∃ M > 0 depending on γ in (H2)(a) such that for u ∈ A with

(9) J(u) ≤ σ ⇒ ||u||L∞(R;Rm) ≤ M.

Indeed let u(x) = M , some x

σ ≥ J(−∞,x)(u) ≥
∫ x

−∞

»
2W (u(x))|u′(x)|dx ≥

√
2

∫ M

|a−|
γ(r)dr

4. Compactness

Let {uj} ⊂ A minimizing sequence,

J(uj) → inf
A

J(u) =: σ0 ≤ σ

and by (9),

(10) |uj(x1)− uj(x2)| ≤ |
∫ x2

x1

|uj(ξ)|dξ| ≤
√
2σ|x1 − x2|1/2

By the Ascoli-Arzela theorem and a diagonal argument ∃ subsequence {uj},

(11) uj → u8 , uniformly on compacts of R.

Note that {uj} is bounded in W 1,2
loc (R;Rm):

1

2

∫ l2

l1

|u′
j|2dx ≤ J(uj) ≤ σ ,

∫ l2

l1

|uj|2dx < C , by (9).
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Hence

(12) uj → u∗ in W 1,2
loc (R;R

m)

(13)
1

2

∫ l2

l1

|u∗
x|2dx ≤ lim inf

j→+∞

1

2

∫ l2

l1

|u′
j|2dx ≤ lim inf

j→+∞

1

2

∫
R
|u′

j|2dx

Also by Fatou,

(14) lim
j→+∞

∫
R
W (u∗) ≤ lim inf

j→+∞

∫
R
W (uj)dx

Thus

(15) J(u∗) = σ0

5. Boundary Conditions at ±∞

By uniform continuity of u∗ (10) and (15)

(16) lim
x→+∞

W (u∗(x)) = 0

If limx→+∞ u∗(x) does not exist, then

∃ {x1
i } , {x2

i } s.t. u∗(x1
i ) → a1 , u∗(x2

i ) → a2

Hence ∃ {x̂i} s.t. W (u∗(x̂i) ↛ 0, in contradiction to (16).
Thus

(17) lim
x→±∞

u∗(x) =

®
a

a+

a , a+ ∈ A.

Claim 1: u∗(−∞) = a−

Suppose for the sake of contradiction that a ̸= a−. Hence ∃ xj → −∞ s.t.

(18) |u∗(xj)− a| = εj , εj → 0

On the other hand uk(x) → a− as x → −∞.

5



By a diagonal argument we can choose subsequence of {uj} which we denote again by
{uj} s.t.

(19) |uj(xj)− a| ≤ εj , j = 1, 2, ...

Since uj(x) → a− as x → −∞, it follows that

(20)

∫ xj

−∞

Å
1

2
|u′

j|2 +W (uj)

ã
dx ≥ σ0 − εj

This is a consequence of J(uj) ≥ σ0 and Exercise 2 below.
On the other hand from W (uj(0)) = W0 and the equicontinuity of uj ((10)) for δ > 0

small, fixed

(21)

∫ δ

−δ

W (uj)dx ≥ δW0

Hence by (19), (20)

(22)

∫ δ

−δ

Å
1

2
|u′

j|2W (uj)

ã
dx ≥ σ0 − εj + δW0

contradicting that {uj} is a minimizing sequence.

Claim 2: u∗(+∞) = a+ ̸= a−

Once more we proceed by contradiction with a similar argument. So suppose u∗(+∞) =
a−. As in (19), ∃ sequence xj → +∞ , uj(xj) → a−. From W (uj(0)) = W0 and the
equicontinuity of u

(23)

∫ δ

−δ

W (uj)dx ≥ δW0

for δ > 0 small fixed.
Since uj ∈ A ⇒ uj(x) → a ̸= a− as x → +∞.
Hence

(24)

∫ +∞

xj

Å
1

2
|u′

j|2 +W (uj)

ã
dx ≥ σ0 − CW δ2,

by Exercise 2.
Thus (23), (24) give∫ +∞

−δ

Å
1

2
|u′

j|2 +W (uj)

ã
dx ≥ σ0 − CW δ2 + δW0,

contradicting that {uj} is a minimizing sequence.
The proof of Theorem 1.1 is complete.
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Exercise 2: Let ai , aj ∈ {W = 0} , s+ > s−. Let v : (s−, s+) → Rm minimize

J(s−,s+)(v) =

∫ s+

s−

Å
1

2
|v′|2 +W (v)

ã
dx

subject to |v(s−)− ai| = |v(s+)− aj| = δ
Then

J(s−,s+)(v) ≥ σij − CW δ2 , CW a positive constant determined by (H1).

2 The Variational Maximum Principle

2.1 Hypotheses (W)

(25) (HVMP )


W : Rm → R , non-negative , W ∈ C(Rm;R)
a ∈ Rm , W (a) = 0

(0, r0] ∋ r → W (a+ rξ) non decreasing , W (a+ r0ξ) > 0

A ⊂ Rn, open, bounded, ∂A Lipschitz.

Theorem 2.1. Let u ∈ W 1,2
loc (A;Rm) ∩ L∞(A;Rm) be a minimizer of

(26) J(u,A) =

∫
A

Å
1

2
|∇u|2 +W (u)

ã
dx

with respect to its Dirichlet conditions on ∂A:

(27) J(u+ v,A) ≥ J(u,A) , ∀ v ∈ C1
0(A;Rm).

Assume that

(28) |u(x)− r| ≤ r on A, 0 < 2r ≤ r0

Then

(29) |u(x)− a| ≤ r on A.
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Comments (Difference with the usual maximum principle) This is a purely variational result
while the usual maximum principle is a calculus fact that is based on the equation. We
explain in terms of exercises:

Exercise 3: Consider for W (u) =
1

2
(u2 − 1)2,

ε2u′′ −W ′(u) = 0

For ε > 0 small there are (periodic) solutions which clearly violate (29).

Exercise 4: For W convex (29) holds by the classical maximum principle:

0 = u′′ −W ′(u) = u′′ − W ′(u)

u
u

Remark (29) does not hold for local minimizers (small perturbations of u increase the
energy).

Before giving the proof we introduce the polar representation for a map u(x) that is a
basic fact that will be utilized extensively in these notes.

(30)

u(x) = a+ |u(x)− a| u(x)− a

|u(x)− a|
=: a+ ρ(x)

⇀
n(x)

ρ(x) := |u(x)− a| ,
⇀
n(x) =

®
u(x)−a
|u(x)−a| , u(x) ̸= a

0 , u(x) = a

Formally

(31) |∇u|2 = |∇ρ|2 + ρ2(x)|∇⇀
n(x)|2

leading to the polar form of the energy

(32) JA(u) =

∫
A

ß
1

2

Ä
|∇ρ|2 + ρ2|∇⇀

n(x)|2
ä
+W (a+ ρ

⇀
n)

™
dx

The point is that we will consider perturbations of u(x) only in the radial point, keeping
⇀
n fixed:
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For u(·) ∈ W 1,2(A;Rm) ∩ L∞(A;Rm), and f : R → R locally Lipschitz, f(0) = 0 we
consider the perturbation

(33) ũ(x) = a+ f(ρ(x))
⇀
n(x)

Then

(34)

∫
A

|∇ũ|2dx =

∫
A

(|f ′(ρ)∇ρ|2 + f 2(ρ)|∇⇀
n|2)dx

It is a calculus fact for Sobolev functions that ũ(·) ∈ W 1,2(A;Rm)∩L∞(A;Rm) and (34),
(32) hold rigorously.

Exercise 5: For variations of the special form

f(s) = sg(s) , g : R → R Lipschitz

we can bypass
⇀
n(x) and express |∇ũ(x)| as follows:

(35) |∇ũ|2 = (f ′(ρ))2|∇ρ|2 + (|∇u|2 − |∇u|2 − |∇ρ|2)(f(ρ)
ρ

)2.

Notice that |∇u|2 ≥ |∇ρ|2, and that moreover if

(36) |f ′| ≤ 1 , |g| ≤ 1

then

(37) |∇ũ(x)|2 ≤ |∇u(x)|2

2.2 Proofs

Theorem 2.1 will follow from the following replacement result:

The cut-off lemma

Lemma 2.2. Let W satisfy the hypotheses (W) and let A ⊂ Rn, open bounded, with
Lipschitz boundary. Suppose that

u(·) ∈ W 1,2(A;Rm) ∩ L∞(A;Rm)
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If the following two condition hold
(I) |u(x)− a| ≤ r on ∂A , 0 < 2r ≤ r0,
(II) Ln(A ∩ {|u(x)− a| > r}) > 0,
then ∃ ũ(·) ∈ W 1,2(A;Rm) ∩ L∞(A;Rm) such that

ũ = u on ∂A

|ũ(x)− a| ≤ r , on A

JA(ũ) < JA(u)

Proof. We will assume A connected (no loss).

Case 1(easy) : ρ(x) ≤ r0 a.e. in A

Let

(38) f(s) =
min{s, r}

s
s = g(s)s

By (37) (|f ′| ≤ 1 , |g| ≤ 1)

(39)

∫
A

|∇ũ(x)|2dx ≤
∫
A

|∇u(x)|2dx

Note that in the case of equality in (39), together with (35)

(40)

0 =

∫
A

|∇ũ|2dx−
∫
A

|∇u|2dx

=

∫
A

|∇ρ|2((f ′(ρ))2 − 1)dx+

∫
A

(|∇u|2 − |∇ρ|2)(g2(ρ)− 1)dx

≤ −
∫
A∩{ρ≥r}

|∇ρ|2dx

(41) ⇒ ∇ρ = 0 , a.e. on A ∩ {ρ ≥ r}

Hence

(42) ∇(ρ̃− ρ) = 0 , a.e. on A (ρ̃ = f(ρ))

Hence

(43) ρ̃(x)− ρ(x) = const. , a.e. in A
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and since

(44)
ρ̃(x)− ρ(x) = 0 , on ∂A in trace sense

⇒ ρ̃(x)− ρ(x) = 0 , a.e. in A

in contradiction to (II).
Thus we have strict inequality in (39).
On the other hand

(45)

∫
A

W (ũ(x))dx =

∫
A

W (a+ f(ρ(x))
⇀
n(x))dx

≤
∫
A

W (a+ ρ(x)
⇀
n(x))dx =

∫
A

W (u(x))dx

Case 1 is settled.

Case 2: Ln(A ∩ {ρ > r0}) > 0

Consider the cut-off functions:

a(s) =


1 , s ≤ r
2r−s
r

, r ≤ s ≤ 2r

0 , s ≥ 2r

f(s) = min{s, r}a(s) , g(s) =
f(s)

s
(Reflection along |u− a| = r)

Define

(46) ũ(x) = a+ g(ρ(x))(u(x)− a)

By (37)

(47) |∇ũ(x)|2 ≤ |∇u(x)|2

Lemma 2.3. Let A ⊂ Rn open, bounded, connected with Lipschitz boundary, f ∈ W 1,2(A;R)
satisfies

(48)

®
f ≤ r̂ on ∂A (trace sense)

Ln(A ∩ {ŝ < f}) > 0 , some ŝ > r̂

Then

(49) Ln(A ∩ {r̂ < f < ŝ) > 0
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Proof of Lemma 2.3. Let

(50) E1 = A ∩ {f ≤ r̂} , E2 = A ∩ {r̂ < f ≤ ŝ} , E3 = A ∩ {ŝ < f}

Define

(51)

σ(x) = min{f(x), ŝ} =

®
f(x) , x ∈ E1 ∪ E2

ŝ , x ∈ E3

τ(x) = max{σ(x), r̂} =


r̂ , x ∈ E1

ŝ , x ∈ E3

f(x) , x ∈ E2

Suppose for the sake of contradiction that

(52) Ln(A ∩ {r̂ < f ≤ ŝ) = 0.

Then

Ln(E2) = 0 and τ(x) =

®
r̂ , x ∈ E1

ŝ , x ∈ E3

(53) ∇τ(x) = 0 a.e. in A

On the other hand min and max of Sobolev functions produce Sobolev functions. Hence
τ is Sobolev and the connectedness of A together with (53) implies that τ ≡ constant. Hence
necessarily

τ ≡ ŝ , Ln(E3) > 0

and also Ln(E1) = 0. Thus f > ŝ a.e. in A. Thus f ≥ ŝ on ∂A, which contradicts (48)(1).
The proof of Lemma 2.3 is complete.

3 The (Vector) Caffarelli-Córdoba Density Estimate

3.1 Introduction

In this lecture we are interested in entire solutions of

(54) ∆u−Wu(u) = 0 , u : Rn → Rm
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Hypotheses on W

(H)


W ∈ C2(Rm; [0∞) , {W = 0} = {a1, ..., aN}
Wu(u) · u > 0 if |u| > M

c2|ξ|2 ≥ ξTWuu(ai)ξ ≥ c1|ξ|2 , i = 1, ..., N

Actually we will be interested in minimizing solutions:

Definition 3.1. A function u : Rn → Rm is a minimizing solution of (54) in the sense of
De Giorgi if

(55)

J(u,Ω) ≤ J(u+ v,Ω) , ∀ bounded open set Ω ⊂ Rn, and ∀ v ∈ C1
0(Ω),

where J(u,Ω) =

∫
Ω

Å
1

2
|∇u|2 +W (u)

ã
dx

Exercise 6: Show that (54) is the Euler-Lagrange of J.

Remark 3.2. We adopt this definition of minimizer as opposed to the standard

min

∫
Rn

Å
1

2
|∇u|2 +W (u)

ã
dx

because it can be shown (Exercises 7 and 8) that for any solution of (54) the following
Liouville type estimates hold:

(56)

®
J(u,Br(0)) = o(rn−2) , as r → +∞, n ≥ 3 ⇒ u ≡ const.

J(u,Br(0)) = o(lnr) , as r → +∞, n = 2 ⇒ u ≡ const.

Hence for n > 1 any nontrivial solution of (54) has the property that∫
Rn

Å
1

2
|∇u|2 +W (u)

ã
dx = ∞

Exercise 7: (The Stress-Energy Tensor)
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(i) Let u : Rn → Rm

Tij(u,∇u) = uxi
· uxj

− δij(
1

2
|∇u|2 +W (u)) i, j = 1, ..., n

Show that

divT = (∇u)T · (∆u−Wu(u))

(ii) Show that

trT =
2− n

2

n∑
i=1

|uxi
|2 − nW (u) = −ng(u) + |∇u|2

where g(u) := 1
2
|∇u|2 +W (u).

(iii) Show that

T + g(u)Id = (∇u)T (∇u) ≥ 0

Exercise 8: (Continuation)
Show that

(i) ∑
i,j

∫
Br

(xiTij)xj
= −

∫
Br

Å
n− 2

2
|∇u|2 + nW (u)

ã
≤ −(n− 2)

∫
Br

g(u)

(ii) By the divergence theorem∑
i,j

∫
Br

(xiTij)xj
dx = r

∑
i,j

∫
∂Br

Tijνiνj = −r

∫
∂Br

Å
g(u)− |∂u

∂ν
|2
ã

≥ −r

∫
∂Br

g(u) = −r
dJBr(u)

dr

(iii) Combining (i),(ii) conclude that

−(n− 2)JBr(u) ≥ −r
dJBr(u)

dr

⇔ d

dr

Ä
r−(n−2)JBr(u)

ä
≥ 0
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(iv) Hence

JBr(u) ≥ crn−2.

Exercise 9:
Combining the 1st equality in (i) with the 2nd in (ii), Exercise 8, derive Pohozaev’s identity∫

Br

Å
n− 2

2
|∇u|2 + nW (u)

ã
= r

∫
Br

Å
1

2
|∇u|2 +W (u)− |∂u

∂ν
|2
ã

Remark 3.3. The hypothesis (H)(ii) above implies easily the bounds

(57) |u(x)| ≤ M , |∇u(x)| ≤ M̃ , x ∈ Rn

Indeed if |{x : |u(x)| > M}| ̸= 0 we take the truncation v(x) =
u(x)

|u(x)|
M , that clearly has

less energy, hence contradicting that u is a miniizer. The gradient bound then follows from
linear elliptic theory (Exercise).

3.2 The Basic Estimate

The following estimate indicates the ”surface like” nature of minimizers.

Lemma 3.4. Let W : Rm → R be continuous, W ≥ 0 and assume that {W = 0} ̸= ∅. Let
u be minimizing (assume estimates (57)).

Then there is a constant Ĉ0 = Ĉ0(W,M, M̃), independent of x0 and such that

(58) Br(x0) ⊂ Ω ⇒ J(u,Br(x0)) ≤ Ĉ0r
n−1, r > 0

Proof. Note g(u) = 1
2
|∇u|2 +W (u) is bounded in Ω and it follows

J(u,Br(x0)) ≤ C1r
n ≤ C1r

n−1 for n ≤ 1
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For r > 1 define the competitor

(59) v(x) =


a, |x− x0| ≤ r − 1

(r − |x− x0|)a+ (|x− x0| − r + 1)u(x), r − 1 < |x− x0| ≤ r

u(x), |x− x0| > r

The definition and the minimizing property of u over balls imply

J(u,Br(x0) ≤ J(v,Br(x0)) = J(v,Br(x0) \Br−1(x0)) ≤ C2r
n−1
0

3.3 Motivation

We now introduce the density estimate by considering first the motivation behind it that
comes from the sharp inference case of minimal surfaces or better minimal partitions. Our
argument below is formal.

Consider a minimal surface Σn−1 ⊂ Rn. Let x ∈ Σn−1 and consider Br(x) which is
partitioned by Σn−1 in two parts Dr and Dc

r.
Let

(60) V (x) = Ln(Dr), A(r) = Hn−1(Σn−1 ∩Br)

Sr stands for the spherical cup bounding Dr, Hn−1 for the (n− 1)− Hausdorff measure.

Consider the following computation.

(61)

V (r) ≤ C[Hn−1(Σn−1 ∩Br +Hn−1(Sr)]
n

n−1 , by the isometric ineq.

≤ C[2Hn−1(Sr)]
n

n−1 , by minimality of Σn−1

≤ C[V ′(r)]
n

n−1 , by the coarea formula or Fubini

From (58) it follows that if µ0 = V (r0) > 0, some δ > 0, then
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(62) V (r) ≥ Crn, r ≥ r0, C = C(n)

The analogy with the diffuse interface is via the identification

(63) A(r) =

∫
Br∩{|u−α|≤λ}

W (u)dx, V (r) = Ln(Br ∩ {|u− α| > λ})

where W (a) = 0 and λ > 0 any number such that

(64) d0 = dist(α, {W = 0} \ {α}) ≥ λ.

3.4 Hypothesis for the Density Estimate

(Hd)



W ∈ C(Rm, [0,∞)), W (α) = 0

(i) 0 < α < 2 : W differentiable in a deleted neighborhood of a

d

dp
W (a+ ρξ) ≥ α c∗ρα−1, ρ ∈ [0, ρ0], ∀ξ : |ξ| = 1

(ii) α = 2 : W is C2 in a neighborhood of a

C2|ξ|2 ≥ ξTWuu(a)ξ ≥ C1|ξ|2

Theorem 3.5. Assume W satisfies (Hd), Ω open, n ≥ 1, u : Ω ⊂ Rn → Rm minimizing.
Then for any µ0 > 0 and any λ ∈ (0, d0) the condition

(65) Ln(Br0(x0) ∩ {|u− α| > λ} ≥ µ0

implies

(66) Ln(Br(x0) ∩ {|u− α| > λ}) ≥ Crn, r ≥ r0

as long as Br(x0) ⊂ Ω , C = C(W,µ0, λ, r0,M, M̃).
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Exercise 10: Utilizing Lemma 3.4 show that the validity of the theorem for one value
of λ ∈ (0, d0) implies its validity for all λ′ ∈ (0, d0).

Exercise 11: Assume {W = 0} = {a1, a2}, and assume that (Hd) holds. Then given
0 < θ < |α1 − α2|, the condition

(67) Ln(B1(x0) ∩ {|u− a1| ≤ θ}) ≥ µ0 > 0

implies the estimate:

(68) Ln(Br(x0) ∩ {|u− a1| ≤ θ}) ≥ Crn

for r ≥ 1 as long as Br ⊂ Ω.

Proof. STEP I : The Identity

We recall the polar form introduced in (30). For u(·) ∈ W 1,2(Br;Rm)∩L∞(Br;Rm), Br =
{|x− x0| < r},

u(x) = a+ qu(x)
⇀
n
u
(x)

where

qu(x) = |u(x)− a|, ⇀
n
u
(x) = u(x)−a

|u(x)−a| , if u(x) ̸= a

qu ∈ W 1,2(Br) ∩ L∞(Br), ∇⇀
n
u
measurable, qu|∇⇀

n
u
| ∈ L2(Br)

(69)

∫
Br

|∇u|2 dx =

∫
Br

|∇qu|2 dx+

∫
Br

(qu)2|∇⇀
n
u
|2 dx
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As in section 2 we consider variations where only the radial part qu is modified while
⇀
n
u

is kept fixed:

(70) h = a+ qh
⇀
n
u
(x), σ = a+ qσ

⇀
n
u
(x)

(71) qσ = min{qh, qu}

where

(72) qh ∈ W 1,2(Br) ∩ L∞(Br), qh ≥ 0

with a suitable radial C1 map, with

(73) qh ≥ qu on ∂Br

(69) with u = σ yields

(74)

∫
Br

|∇σ|2 dx =

∫
Br

|∇qσ|2 dx+

∫
Br

(qσ)2|∇⇀
n
u
|2 dx

Thus we derive the identity:

(75)

1

2

∫
Br

(|∇qu|2 − |∇qσ|2) dx =

JBr(u)− JBr(σ) +
1

2

∫
Br

((qσ)2 − (qu)2)|∇⇀
n
u
|2 dx+

∫
Br

(W (σ)−W (u)) dx

≤
∫
Br

(W (σ)−W (u)) dx

where in deriving the last inequality we used that qσ ≤ qu and the minimizing property of
u. Notice the similarity of (75) with (61).

STEP II: The isoperimetric estimate

Recall the Sobolev inequality
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(76)

Å∫
Rn

|f |
n−1
n dx

ãn−1
n

≤ C(n)

∫
Rn

|∇f |dx, ∀f ∈ W 1,2(Rn), n ≥ 2

with ρ0 as in (Hd), we define the cut-off

β = min{qu − qσ, λ} in Br, with λ > 0, small λ ≤ ρ0

and apply (76) to β2

(77)

Å∫
Br

β
2n
n−1dx

ãn−1
n

=

Å∫
Br

(β2)
n

n−1dx

ãn−1
n

≤ C(n)

∫
Br

|∇(β2)|dx ≤ 2C(n)

∫
Br∩{qu−qσ≤λ}

|∇β||β|dx

where we have utilized that β = 0 on ∂Br and ∇β = 0 a.e on qu − qσ > λ.

By Young

(78)

Å∫
Br

β
2n
n−1dx

ãn−1
n

≤ 2C(n)

∫
Br∩{qu−qσ≤λ}

|∇β||β|dx

≤ C(n)A

∫
Br∩{qu−qσ≤λ}

|∇β|2dx+
C(u)

A

∫
Br∩{qu−qσ≤λ}

β2dx

≤ C(n)A

∫
Br

|∇(qu − qσ)|2dx+
C(u)

A

∫
Br∩{qu−qσ≤λ}

(qu − qσ)2dx

Noting the identity

(79) |∇(qu − qσ)|2 = |∇qu|2 − |∇qσ|2 − 2∇qσ(∇qu −∇qσ)

we can bound the right - hand side of (78) utilizing the identity (75).

(80)

Å∫
Br

β
2n
n−1dx

ãn−1
n

≤ 2C(n)A

Å∫
Br

(W (σ)−W (u))dx−
∫
Br

∇qσ(∇qu −∇qσ)dx

ã
+
C(u)

A

∫
Br∩{qu−qσ≤λ}

(qu − qσ)2dx
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Assuming that qh ∈ W 1,2(Br) ∩ L∞(Br) can be chosen so that

(81) qh = 0 on Br−T , some fixed T > 0

and this

qσ on Br−T ⇔ σ = a on Br−T

we can estimateÅ∫
Br

β
2n
n−1dx

ãn−1
n

≥
Ç∫

Br−T∩{qu>λ}
β

2n
n−1dx

ån−1
n

≥ λ2Ln(Br−T ∩ {qu > λ})
n−1
n

and obtain from (80) that

(82)

λ2Ln(Br−T ∩ {qu > λ})
n−1
n

≤ 2C(n)A

Å∫
Br

(W (σ)−W (u))dx−
∫
Br

∇qσ(∇qu −∇qσ)dx

ã
+
C(n)

A

∫
Br∩{qu−qσ≤λ}

(qu − qσ)2dx

Exercise 12: (α < 2)

Consider the O.D.E ®
q′ = 2

2−α
C

α
2 q

α
2 , q′′ = 2α

(2−α)2
Cαqα−1

q(0) = 0

Show that it has the family of nontrivial solutions

q(s) =

®
C

α
2−α s

2
2−α , s > 0

0, s ≤ 0

Let q̃(s) = Cs
2

2−τ , q̃(s) = 0 for s ≤ 0, τ = max{α, 1}

Show that qh(x) = q̃(|x| − (r − T )) is Sobolev.
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Notice that q′′(0) is finite, q′(0) = 0.

STEP III: The case 0 < α < 2

A. We recall (Hd)(i), which is modeled after W (u) ∼ |u− a|2 for u ∼ a. The validity of
(57) needs some attention here and will be discussed later.

We estimate the first-hand side of (82).
We begin with Br−T . Since qσ = 0 on Br−T , the first-hand side reduces to.

(83)

I = −2C(n)A

∫
Br−T

W (u)dx+
C(n)

A

∫
Br−T∩{qu≤λ}

(qu)2dx

≤ −2C(n)A

∫
Br−T∩{qu≤λ}

W (u)dx+
C(n)

A

∫
Br−T∩{qu≤λ}

(qu)2dx

Exercise 13:
Assume λ ≤ ρ0, ρ0 as on (Hd). Then there exists A0 > 0 independent of r, such that

(84) I ≤ −C(n)

2
A

∫
Br−T∩{qu≤λ}

W (u)dx, for A > A0 =
»

2λ2−α/3C∗

(Utilize lower bound in (Hd)(i)).

B. Next we consider the right-hand side of (82) on Br \Br−T

Set

I1 = 2C(n)A

∫
Br\Br−T

(W (σ)−W (u))dx+
C(n)

A

∫
(Br\Br−T )∩{qu−qσ≤λ}

(qu − qσ)2dx

I2 = −2C(n)A

∫
Br\Br−T

∇qσ(∇qu −∇qσ)dx

Assume λ ≤ min{ρ0, 1}. Then there exists a constant C̃ > 0 independent of r, such that

(85)
I1 ≤ C̃ALn((Br \Br−T ) ∩ {qu > λ}) + C̃

A

∫
(Br\Br−T )∩{qu≤λ}

W (u)dx

A > 0
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To see this we proceed by splitting the integration over Br \Br−T into integrations over
{qu ≤ λ} and {qu > λ}

From qσ ≤ qu, qu ≤ λ ≤ ρ0 by the monotonicity of W near u = a∫
Br\Br−T

(W (σ)−W (u))dx ≤ dx ≤ 0

Thus ∫
Br\Br−T

(W (σ)−W (u))dx ≤ WMLn((Br \Br−T ) ∩ {qu > λ})

For the 2nd term we can utilize the lower bound in (Hd)(i):

In qσ ≤ qu ≤ λ ≤ min{ρ0, 1}

W (u) ≥ C∗(qu)α ≥ C∗(qu − qσ)α ≥ C∗(qu − qσ)2

hence ∫
(Br\Br−T )∩{qu≤λ}

(qu − qσ)2dx ≤ 1

C∗

∫
(Br\Br−T )∩{qu≤λ}

W(u)dx

and (84) is established with C̃ = C(n)max{ 1
C∗ , 2WM}.

Next we take up I2, λ ≤ min{ρ0, 1}.
We will show that there exists Ĉ > 0, independent of r, but depending on M , T , such

that:

(86) I2 ≤ ĈALn((Br \Br−T ) ∩ {qu > λ}) + ĈA

∫
(Br\Br−T )∩{qu≤λ}

W (u)dx

We proceed as follows. Let qh(x) as in Exercise 12

I2 = −2C(n)A

∫
(Br\Br−T )∩{qh<qu}

∇qσ(∇qu−∇qσ)dx−2C(n)A

∫
(Br\Br−T )∩{qh≤qu}

∇qσ(∇qu−∇qσ)dx

(trivially, since qσ = min{qh, qu})

= −2C(n)A

∫
(Br\Br−T )∩{qh<qu}

∇qh(∇qu−∇qh)dx = 2C(n)A

∫
(Br\Br−T )∩{qh<qu}

∆qh(qu−qh)dx

We now split the integral I2 = I+2 + I−2 where I+2 , I
−
2 correspond to the integration over
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{qu > λ} and {qu ≤ λ}.

Then we have the estimates

I+2 ≤ 2CACMMLn((Br \Br−T ) ∩ {qu − λ})

I−2 ≤ 2CAC1

∫
(Br\Br−T )∩{qh<qu}∩{qu≤λ}

(qh)τ−1(qu − qh)dx

In the 1st we take ∆qh ≤ CM . In the 2nd we utilize ∆qh ≤ C1(q
h)τ−1, CM and C1

constants bounded as as α → 0. Moreover in the 2nd term we have:

(qh)τ−1(qu − qh) ≤ (qu)τ−1(qu − qh) ≤ (qu)α ≤ 1

C∗W (u)

and so (86) is established.

Recalling (63) and collecting all the estimates above, we have for fixed A > A0:

λ2(V (r − T ))
n−1
n + CA A(r − T )

≤ (C̃ + Ĉ)A(V (r)− V (r − T )) + (
C̃

A
+ ĈA)(A(r)− A(r − T ))

and rearranging

(87) C(λ)
Ä
(V (r − T ))

n−1
n + A(r − T )

ä
≤ (V (r)− V (r − T )) + (A(r)− A(r − T ))

where

C(λ) =
min{λ2, CA}

max{(C̃ + Ĉ)A,
Ĉ

A
+ ĈA}

From this difference scheme we obtain (Exercise 12)

(88) V (kT ) + A(kT ) ≥ Ckn, for k ≥ k0, k integer

utilizing

(89) A(kT ) ≤ Ĉ0(kT )
n−1 (by Lemma 3.4)

we conclude the proof of Theorem 3.5 for 0 < a < 2.
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Remark 3.6.
1) The case α = 2 is more involved since there is no comparison function qh that vanishes
on ∂Br−T . Instead one has to resort to the linear equation®

∆ϕ = c0ϕ in Br

ϕ = 1

and construct a comparison function that is exponentially small on Br−T , T large,

qh ≤ Me−C1T on Br−T

We refer to [1].
2) For 0 < α < 1 the L∞ gradient bound is not appropriate since u ∈ Cβ

loc(Rn,Rm) for some
β ∈ (0, 1). The only prerequisite for the proof on the case α ∈ (0, 2) is Lemma 3.4 that can
be established with a different proof ([1]).
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