Lecture Notes on Elliptic Systems of Phase Transition type

Nicholas Alikakos (University of Athens, EKPA)

Festum π Conference in Chania, 2024

1 One dimensional solutions: Heteroclinic Connections

$$
\begin{equation*}
u^{\prime \prime}-W_{u}(u)=0 \quad, \quad u(\pm \infty)=a^{ \pm}, a^{+} \neq a^{-} \tag{1}
\end{equation*}
$$

$a^{ \pm} \in A=\{W=0\}, \sharp A \geq 2$.

$$
\begin{equation*}
J_{\left(s_{1}, s_{2}\right)}(u):=\int_{s_{1}}^{s_{2}}\left(\frac{1}{2}\left|u^{\prime}\right|^{2}+W(u)\right) d x \quad, \quad J(u)=J_{(-\infty, \infty)}(u) \tag{2}
\end{equation*}
$$

Hypotheses

(H1) $W \in C^{2}, c_{2}|\xi|^{2} \geq \xi^{T} \partial^{2} W_{u}(a) \xi \geq c_{1}|\xi|^{2}, a \in A$
(H2) (a) $\liminf _{|u| \rightarrow+\infty} W(u)>0 \quad$ or the weaker
(b) $\sqrt{W(u)} \geq \gamma(|u|), \gamma:(0,+\infty) \rightarrow \mathbb{R}, \int_{0}^{\infty} \gamma(r) d r=+\infty \quad$ or the stronger
(c) $W_{u}(u) \cdot u>0$ if $|u|>M$.

Theorem 1.1. (Existence) Under (H1), (H2)(b), given $a^{-} \in A, \exists a^{+} \in A \backslash\left\{a^{-}\right\}$and u classical solution to

$$
\begin{equation*}
\frac{1}{2}\left|u^{\prime}\right|^{2}-W(u)=0 \quad \text { (equipartition) } \tag{3}
\end{equation*}
$$

which minimizes J on

$$
\begin{equation*}
\mathscr{A}=\left\{u \in W_{l o c}^{1,2}\left(\mathbb{R} ; \mathbb{R}^{m}\right) \mid \lim _{x \rightarrow-\infty} u(x)=a^{-}, \lim _{x \rightarrow+\infty} u(x) \in A \backslash\left\{a^{-}\right\}\right\} \tag{4}
\end{equation*}
$$

Note: (1) $W(u(x))>0, x \in \mathbb{R}$, by uniqueness for (3).
(2) If $|A|$ is even \Rightarrow at least $\frac{|A|}{2}$ connections. If $|A|$ is odd \Rightarrow at least $\frac{|A|+1}{2}$ connections.

Example 1.2. $m=1, W(u)=\frac{1}{2}\left(u^{2}-1\right)^{2}$, bistable

$$
u(x)=\tanh x, a^{ \pm}= \pm 1 \quad, \text { unique modulo translations }
$$

Remark 1.3. Exercise $1(m=2, g:(\mathbb{C}, W(z) d z d \bar{z}) \rightarrow$ Euclidean Plane isometry $)$. Identify $\left(u_{1}, u_{2}\right)$ with the complex number $z=u_{1}+i u_{2}$ and write $W\left(u_{1}, u_{2}\right)=|f(z)|^{2}$. Assume $f^{\prime}=g$ is holomorphic in D, open in \mathbb{R}^{2}. Let $u(x)$ a solution provided by Theorem 1.1.

Then

$$
\operatorname{Im}\left(\frac{g(z)-g\left(a^{-}\right)}{g\left(a^{+}\right)-g\left(a^{-}\right)}\right)=0, \text { for } z \in \Gamma=\{u(x) \mid x \in \mathbb{R}\}
$$

Moreover the set $g(\Gamma)=\{g(z) \mid z \in \Gamma\}$ is a line segment with end point $g\left(a^{-}\right), g\left(a^{+}\right)$and

$$
\int_{a}^{y}\left(\frac{1}{2}\left|u^{\prime}\right|^{2}+W(u)\right) d x=\sqrt{2} \int_{a}^{y}\left|\frac{d}{d x} g(u)\right| d x=\sqrt{2}\left|g(u(y))-g\left(a^{-}\right)\right|
$$

Remark 1.4. $m \geq 2$, Non uniqueness is possible

Remark 1.5. Sufficient condition for existence of connection $a_{i} \rightarrow a_{j},\{W=0\}=\left\{a_{1}, \ldots, a_{N}\right\}$
Let

$$
\begin{equation*}
\sigma_{i j}=\inf _{\mathscr{A}_{i j}} J(u), \mathscr{A}_{i j}:=\left\{u \in W_{l o c}^{1,2}\left(\mathbb{R} ; \mathbb{R}^{m}\right) \mid \lim _{x \rightarrow-\infty} u(x)=a_{i}, \lim _{x \rightarrow+\infty} u(x)=a_{j}\right\} \tag{5}
\end{equation*}
$$

$i, j=1, \ldots, N$. Then the condition

$$
\begin{equation*}
\sigma_{i j}<\sigma_{i h}+\sigma_{h j} \forall a_{h} \in A \backslash\left\{a_{i}, a_{j}\right\} \quad \text { (Triangle Inequality) } \tag{6}
\end{equation*}
$$

(6) is sufficient for the existence of an orbit connecting a_{i} to a_{j}.
(For $W(z)=\left|\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\right|^{2}$ it is also necessary.)

Proof of Theorem 1.1.

1. Removing noncompactness due to translations choose $r_{0}>0$ small such that

$$
\begin{equation*}
\min _{a \in A,|u-a|<r_{0}} W(u)=W_{0} . \tag{7}
\end{equation*}
$$

$\forall u(\cdot) \in \mathscr{A}, \exists x_{0}$ such that $W\left(u\left(x_{0}\right)\right)=W_{0}$. Consider then the translates of $u \in \mathscr{A}$ with $W(u(0))=W_{0}$. We restrict ourselves to this modified \mathscr{A}, which we still denote by \mathscr{A}.
2. $\mathscr{A} \neq \emptyset$. Indeed given a^{-}consider the element $\tilde{a} \neq a^{-}$in A closest to a^{-}. Let

$$
\tilde{u}(x)=\left(1-\left(x+x_{0}\right)\right) a^{-}+\left(x+x_{0}\right) \tilde{a}
$$

Choose $x_{0} \in(0,1)$ s.t. $W(\tilde{u}(0))=W_{0}$.
Let

$$
\begin{equation*}
J(\tilde{u})=\sigma \tag{8}
\end{equation*}
$$

3. L^{∞} bound
$\exists M>0$ depending on γ in (H2)(a) such that for $u \in \mathscr{A}$ with

$$
\begin{equation*}
J(u) \leq \sigma \Rightarrow\|u\|_{L^{\infty}\left(\mathbb{R} ; \mathbb{R}^{m}\right)} \leq M \tag{9}
\end{equation*}
$$

Indeed let $u(\bar{x})=M$, some \bar{x}

$$
\sigma \geq J_{(-\infty, \bar{x})}(u) \geq \int_{-\infty}^{\bar{x}} \sqrt{2 W(u(x))}\left|u^{\prime}(x)\right| d x \geq \sqrt{2} \int_{\left|a^{-}\right|}^{M} \gamma(r) d r
$$

4. Compactness

Let $\left\{u_{j}\right\} \subset \mathscr{A}$ minimizing sequence,

$$
J\left(u_{j}\right) \rightarrow \inf _{\mathscr{A}} J(u)=: \sigma_{0} \leq \sigma
$$

and by (9),

$$
\begin{equation*}
\left|u_{j}\left(x_{1}\right)-u_{j}\left(x_{2}\right)\right| \leq\left|\int_{x_{1}}^{x_{2}}\right| u_{j}(\xi)|d \xi| \leq \sqrt{2} \sigma\left|x_{1}-x_{2}\right|^{1 / 2} \tag{10}
\end{equation*}
$$

By the Ascoli-Arzela theorem and a diagonal argument \exists subsequence $\left\{u_{j}\right\}$,

$$
\begin{equation*}
u_{j} \rightarrow u^{8} \quad, \quad \text { uniformly on compacts of } \mathbb{R} . \tag{11}
\end{equation*}
$$

Note that $\left\{u_{j}\right\}$ is bounded in $W_{\text {loc }}^{1,2}\left(\mathbb{R} ; \mathbb{R}^{m}\right)$:

$$
\frac{1}{2} \int_{l_{1}}^{l_{2}}\left|u_{j}^{\prime}\right|^{2} d x \leq J\left(u_{j}\right) \leq \sigma, \int_{l_{1}}^{l_{2}}\left|u_{j}\right|^{2} d x<C, \text { by }(9)
$$

Hence

$$
\begin{gather*}
u_{j} \rightarrow u^{*} \text { in } W_{l o c}^{1,2}\left(\mathbb{R} ; \mathbb{R}^{m}\right) \tag{12}\\
\frac{1}{2} \int_{l_{1}}^{l_{2}}\left|u_{x}^{*}\right|^{2} d x \leq \liminf _{j \rightarrow+\infty} \frac{1}{2} \int_{l_{1}}^{l_{2}}\left|u_{j}^{\prime}\right|^{2} d x \leq \liminf _{j \rightarrow+\infty} \frac{1}{2} \int_{\mathbb{R}}\left|u_{j}^{\prime}\right|^{2} d x
\end{gather*}
$$

Also by Fatou,

$$
\begin{equation*}
\lim _{j \rightarrow+\infty} \int_{\mathbb{R}} W\left(u^{*}\right) \leq \liminf _{j \rightarrow+\infty} \int_{\mathbb{R}} W\left(u_{j}\right) d x \tag{14}
\end{equation*}
$$

Thus

$$
\begin{equation*}
J\left(u^{*}\right)=\sigma_{0} \tag{15}
\end{equation*}
$$

5. Boundary Conditions at $\pm \infty$

By uniform continuity of u^{*} (10) and (15)

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} W\left(u^{*}(x)\right)=0 \tag{16}
\end{equation*}
$$

If $\lim _{x \rightarrow+\infty} u^{*}(x)$ does not exist, then

$$
\exists\left\{x_{i}^{1}\right\},\left\{x_{i}^{2}\right\} \text { s.t. } u^{*}\left(x_{i}^{1}\right) \rightarrow a_{1}, u^{*}\left(x_{i}^{2}\right) \rightarrow a_{2}
$$

Hence $\exists\left\{\hat{x}_{i}\right\}$ s.t. $W\left(u^{*}\left(\hat{x}_{i}\right) \nrightarrow 0\right.$, in contradiction to (16).
Thus

$$
\lim _{x \rightarrow \pm \infty} u^{*}(x)=\left\{\begin{array}{l}
a \tag{17}\\
a^{+}
\end{array}\right.
$$

$a, a^{+} \in A$.
Claim 1: $u^{*}(-\infty)=a^{-}$
Suppose for the sake of contradiction that $a \neq a^{-}$. Hence $\exists x_{j} \rightarrow-\infty$ s.t.

$$
\begin{equation*}
\left|u^{*}\left(x_{j}\right)-a\right|=\varepsilon_{j}, \quad \varepsilon_{j} \rightarrow 0 \tag{18}
\end{equation*}
$$

On the other hand $u_{k}(x) \rightarrow a^{-}$as $x \rightarrow-\infty$.

By a diagonal argument we can choose subsequence of $\left\{u_{j}\right\}$ which we denote again by $\left\{u_{j}\right\}$ s.t.

$$
\begin{equation*}
\left|u_{j}\left(x_{j}\right)-a\right| \leq \varepsilon_{j}, j=1,2, \ldots \tag{19}
\end{equation*}
$$

Since $u_{j}(x) \rightarrow a^{-}$as $x \rightarrow-\infty$, it follows that

$$
\begin{equation*}
\int_{-\infty}^{x_{j}}\left(\frac{1}{2}\left|u_{j}^{\prime}\right|^{2}+W\left(u_{j}\right)\right) d x \geq \sigma_{0}-\varepsilon_{j} \tag{20}
\end{equation*}
$$

This is a consequence of $J\left(u_{j}\right) \geq \sigma_{0}$ and Exercise 2 below.
On the other hand from $W\left(u_{j}(0)\right)=W_{0}$ and the equicontinuity of $u_{j}((10))$ for $\delta>0$ small, fixed

$$
\begin{equation*}
\int_{-\delta}^{\delta} W\left(u_{j}\right) d x \geq \delta W_{0} \tag{21}
\end{equation*}
$$

Hence by (19), (20)

$$
\begin{equation*}
\int_{-\delta}^{\delta}\left(\frac{1}{2}\left|u_{j}^{\prime}\right|^{2} W\left(u_{j}\right)\right) d x \geq \sigma_{0}-\varepsilon_{j}+\delta W_{0} \tag{22}
\end{equation*}
$$

contradicting that $\left\{u_{j}\right\}$ is a minimizing sequence.
Claim 2: $u^{*}(+\infty)=a^{+} \neq a^{-}$
Once more we proceed by contradiction with a similar argument. So suppose $u^{*}(+\infty)=$ a^{-}. As in (19), \exists sequence $x_{j} \rightarrow+\infty, u_{j}\left(x_{j}\right) \rightarrow a^{-}$. From $W\left(u_{j}(0)\right)=W_{0}$ and the equicontinuity of u

$$
\begin{equation*}
\int_{-\delta}^{\delta} W\left(u_{j}\right) d x \geq \delta W_{0} \tag{23}
\end{equation*}
$$

for $\delta>0$ small fixed.
Since $u_{j} \in \mathscr{A} \Rightarrow u_{j}(x) \rightarrow a \neq a^{-}$as $x \rightarrow+\infty$.
Hence

$$
\begin{equation*}
\int_{x_{j}}^{+\infty}\left(\frac{1}{2}\left|u_{j}^{\prime}\right|^{2}+W\left(u_{j}\right)\right) d x \geq \sigma_{0}-C_{W} \delta^{2} \tag{24}
\end{equation*}
$$

by Exercise 2.
Thus (23), (24) give

$$
\int_{-\delta}^{+\infty}\left(\frac{1}{2}\left|u_{j}^{\prime}\right|^{2}+W\left(u_{j}\right)\right) d x \geq \sigma_{0}-C_{W} \delta^{2}+\delta W_{0}
$$

contradicting that $\left\{u_{j}\right\}$ is a minimizing sequence.
The proof of Theorem 1.1 is complete.

Exercise 2: Let $a_{i}, a_{j} \in\{W=0\}, s_{+}>s_{-}$. Let $v:\left(s_{-}, s_{+}\right) \rightarrow \mathbb{R}^{m}$ minimize

$$
J_{\left(s_{-}, s_{+}\right)}(v)=\int_{s_{-}}^{s_{+}}\left(\frac{1}{2}\left|v^{\prime}\right|^{2}+W(v)\right) d x
$$

subject to $\left|v\left(s_{-}\right)-a_{i}\right|=\left|v\left(s_{+}\right)-a_{j}\right|=\delta$
Then

$$
J_{\left(s^{-}, s^{+}\right)}(v) \geq \sigma_{i j}-C_{W} \delta^{2} \quad, C_{W} \text { a positive constant determined by }(\mathbf{H} 1)
$$

2 The Variational Maximum Principle

2.1 Hypotheses (W)

$$
\left(\mathbf{H}_{V M P}\right)\left\{\begin{array}{l}
W: \mathbb{R}^{m} \rightarrow \mathbb{R}, \text { non-negative }, W \in C\left(\mathbb{R}^{m} ; \mathbb{R}\right) \tag{25}\\
a \in \mathbb{R}^{m}, W(a)=0 \\
\left(0, r_{0}\right] \ni r \rightarrow W(a+r \xi) \text { non decreasing }, W\left(a+r_{0} \xi\right)>0
\end{array}\right.
$$

$A \subset \mathbb{R}^{n}$, open, bounded, ∂A Lipschitz.

Theorem 2.1. Let $u \in W_{l o c}^{1,2}\left(A ; \mathbb{R}^{m}\right) \cap L^{\infty}\left(A ; \mathbb{R}^{m}\right)$ be a minimizer of

$$
\begin{equation*}
J(u, A)=\int_{A}\left(\frac{1}{2}|\nabla u|^{2}+W(u)\right) d x \tag{26}
\end{equation*}
$$

with respect to its Dirichlet conditions on ∂A :

$$
\begin{equation*}
J(u+v, A) \geq J(u, A), \forall v \in C_{0}^{1}\left(A ; \mathbb{R}^{m}\right) \tag{27}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
|u(x)-r| \leq r \text { on } A, 0<2 r \leq r_{0} \tag{28}
\end{equation*}
$$

Then

$$
\begin{equation*}
|u(x)-a| \leq r \text { on } A \tag{29}
\end{equation*}
$$

Comments (Difference with the usual maximum principle) This is a purely variational result while the usual maximum principle is a calculus fact that is based on the equation. We explain in terms of exercises:

Exercise 3: Consider for $W(u)=\frac{1}{2}\left(u^{2}-1\right)^{2}$,

$$
\varepsilon^{2} u^{\prime \prime}-W^{\prime}(u)=0
$$

For $\varepsilon>0$ small there are (periodic) solutions which clearly violate (29).
Exercise 4: For W convex (29) holds by the classical maximum principle:

$$
0=u^{\prime \prime}-W^{\prime}(u)=u^{\prime \prime}-\frac{W^{\prime}(u)}{u} u
$$

Remark (29) does not hold for local minimizers (small perturbations of u increase the energy).

Before giving the proof we introduce the polar representation for a map $u(x)$ that is a basic fact that will be utilized extensively in these notes.

$$
\begin{gather*}
u(x)=a+|u(x)-a| \frac{u(x)-a}{|u(x)-a|}=: a+\rho(x) \vec{n}(x) \\
\rho(x):=|u(x)-a|, \vec{n}(x)= \begin{cases}\frac{u(x)-a}{|u(x)-a|}, & , u(x) \neq a \\
0 & , u(x)=a\end{cases} \tag{30}
\end{gather*}
$$

Formally

$$
\begin{equation*}
|\nabla u|^{2}=|\nabla \rho|^{2}+\rho^{2}(x)|\nabla \vec{n}(x)|^{2} \tag{31}
\end{equation*}
$$

leading to the polar form of the energy

$$
\begin{equation*}
J_{A}(u)=\int_{A}\left\{\frac{1}{2}\left(|\nabla \rho|^{2}+\rho^{2}|\nabla \stackrel{\rightharpoonup}{n}(x)|^{2}\right)+W(a+\rho \stackrel{\rightharpoonup}{n})\right\} d x \tag{32}
\end{equation*}
$$

The point is that we will consider perturbations of $u(x)$ only in the radial point, keeping $\stackrel{\rightharpoonup}{n}$ fixed:

For $u(\cdot) \in W^{1,2}\left(A ; \mathbb{R}^{m}\right) \cap L^{\infty}\left(A ; \mathbb{R}^{m}\right)$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ locally Lipschitz, $f(0)=0$ we consider the perturbation

$$
\begin{equation*}
\tilde{u}(x)=a+f(\rho(x)) \stackrel{\rightharpoonup}{n}(x) \tag{33}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{A}|\nabla \tilde{u}|^{2} d x=\int_{A}\left(\left|f^{\prime}(\rho) \nabla \rho\right|^{2}+f^{2}(\rho)|\nabla \vec{n}|^{2}\right) d x \tag{34}
\end{equation*}
$$

It is a calculus fact for Sobolev functions that $\tilde{u}(\cdot) \in W^{1,2}\left(A ; \mathbb{R}^{m}\right) \cap L^{\infty}\left(A ; \mathbb{R}^{m}\right)$ and (34), (32) hold rigorously.

Exercise 5: For variations of the special form

$$
f(s)=s g(s), g: \mathbb{R} \rightarrow \mathbb{R} \text { Lipschitz }
$$

we can bypass $\vec{n}(x)$ and express $|\nabla \tilde{u}(x)|$ as follows:

$$
\begin{equation*}
|\nabla \tilde{u}|^{2}=\left(f^{\prime}(\rho)\right)^{2}|\nabla \rho|^{2}+\left(|\nabla u|^{2}-|\nabla u|^{2}-|\nabla \rho|^{2}\right)\left(\frac{f(\rho)}{\rho}\right)^{2} . \tag{35}
\end{equation*}
$$

Notice that $|\nabla u|^{2} \geq|\nabla \rho|^{2}$, and that moreover if

$$
\begin{equation*}
\left|f^{\prime}\right| \leq 1, \quad|g| \leq 1 \tag{36}
\end{equation*}
$$

then

$$
\begin{equation*}
|\nabla \tilde{u}(x)|^{2} \leq|\nabla u(x)|^{2} \tag{37}
\end{equation*}
$$

2.2 Proofs

Theorem 2.1 will follow from the following replacement result:

The cut-off lemma

Lemma 2.2. Let W satisfy the hypotheses (\boldsymbol{W}) and let $A \subset \mathbb{R}^{n}$, open bounded, with Lipschitz boundary. Suppose that

$$
u(\cdot) \in W^{1,2}\left(A ; \mathbb{R}^{m}\right) \cap L^{\infty}\left(A ; \mathbb{R}^{m}\right)
$$

If the following two condition hold
(I) $|u(x)-a| \leq r$ on $\partial A, 0<2 r \leq r_{0}$,
(II) $\mathcal{L}^{n}(A \cap\{|u(x)-a|>r\})>0$,
then $\exists \tilde{u}(\cdot) \in W^{1,2}\left(A ; \mathbb{R}^{m}\right) \cap L^{\infty}\left(A ; \mathbb{R}^{m}\right)$ such that

$$
\left\{\begin{array}{l}
\tilde{u}=u \text { on } \partial A \\
|\tilde{u}(x)-a| \leq r, \text { on } A \\
J_{A}(\tilde{u})<J_{A}(u)
\end{array}\right.
$$

Proof. We will assume A connected (no loss).
Case 1(easy) : $\underline{\rho(x) \leq r_{0} \text { a.e. in } A}$
Let

$$
\begin{equation*}
f(s)=\frac{\min \{s, r\}}{s} s=g(s) s \tag{38}
\end{equation*}
$$

By (37) $\left(\left|f^{\prime}\right| \leq 1,|g| \leq 1\right)$

$$
\begin{equation*}
\int_{A}|\nabla \tilde{u}(x)|^{2} d x \leq \int_{A}|\nabla u(x)|^{2} d x \tag{39}
\end{equation*}
$$

Note that in the case of equality in (39), together with (35)

$$
\begin{gather*}
0=\int_{A}|\nabla \tilde{u}|^{2} d x-\int_{A}|\nabla u|^{2} d x \\
=\int_{A}|\nabla \rho|^{2}\left(\left(f^{\prime}(\rho)\right)^{2}-1\right) d x+\int_{A}\left(|\nabla u|^{2}-|\nabla \rho|^{2}\right)\left(g^{2}(\rho)-1\right) d x \tag{40}\\
\leq-\int_{A \cap\{\rho \geq r\}}|\nabla \rho|^{2} d x \\
\Rightarrow \nabla \rho=0 \quad \text {, a.e. on } A \cap\{\rho \geq r\} \tag{41}
\end{gather*}
$$

Hence

$$
\begin{equation*}
\nabla(\tilde{\rho}-\rho)=0 \quad, \text { a.e. on } A(\tilde{\rho}=f(\rho)) \tag{42}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\tilde{\rho}(x)-\rho(x)=\text { const. } \quad, \text { a.e. in } A \tag{43}
\end{equation*}
$$

and since

$$
\begin{gather*}
\tilde{\rho}(x)-\rho(x)=0 \quad, \text { on } \partial A \text { in trace sense } \\
\Rightarrow \tilde{\rho}(x)-\rho(x)=0, \text { a.e. in } A \tag{44}
\end{gather*}
$$

in contradiction to (II).
Thus we have strict inequality in (39).
On the other hand

$$
\begin{align*}
& \int_{A} W(\tilde{u}(x)) d x=\int_{A} W(a+f(\rho(x)) \vec{n}(x)) d x \\
& \leq \int_{A} W(a+\rho(x) \vec{n}(x)) d x=\int_{A} W(u(x)) d x \tag{45}
\end{align*}
$$

Case 1 is settled.
Case 2: $\mathcal{L}^{n}\left(A \cap\left\{\rho>r_{0}\right\}\right)>0$
Consider the cut-off functions:

$$
\begin{gathered}
a(s)= \begin{cases}1, & s \leq r \\
\frac{2 r-s}{r}, & r \leq s \leq 2 r \\
0, & s \geq 2 r\end{cases} \\
f(s)=\min \{s, r\} a(s), g(s)=\frac{f(s)}{s}
\end{gathered}
$$

(Reflection along $|u-a|=r$)
Define

$$
\begin{equation*}
\tilde{u}(x)=a+g(\rho(x))(u(x)-a) \tag{46}
\end{equation*}
$$

By (37)

$$
\begin{equation*}
|\nabla \tilde{u}(x)|^{2} \leq|\nabla u(x)|^{2} \tag{47}
\end{equation*}
$$

Lemma 2.3. Let $A \subset \mathbb{R}^{n}$ open, bounded, connected with Lipschitz boundary, $f \in W^{1,2}(A ; \mathbb{R})$ satisfies

$$
\left\{\begin{array}{l}
f \leq \hat{r} \text { on } \partial A(\text { trace sense }) \tag{48}\\
\mathcal{L}^{n}(A \cap\{\hat{s}<f\})>0, \text { some } \hat{s}>\hat{r}
\end{array}\right.
$$

Then

$$
\begin{equation*}
\mathcal{L}^{n}(A \cap\{\hat{r}<f<\hat{s})>0 \tag{49}
\end{equation*}
$$

Proof of Lemma 2.3. Let

$$
\begin{equation*}
E_{1}=A \cap\{f \leq \hat{r}\}, E_{2}=A \cap\{\hat{r}<f \leq \hat{s}\}, E_{3}=A \cap\{\hat{s}<f\} \tag{50}
\end{equation*}
$$

Define

$$
\begin{gather*}
\sigma(x)=\min \{f(x), \hat{s}\}=\left\{\begin{array}{l}
f(x), x \in E_{1} \cup E_{2} \\
\hat{s}, x \in E_{3}
\end{array}\right. \\
\tau(x)=\max \{\sigma(x), \hat{r}\}=\left\{\begin{array}{l}
\hat{r}, x \in E_{1} \\
\hat{s}, x \in E_{3} \\
f(x), x \in E_{2}
\end{array}\right. \tag{51}
\end{gather*}
$$

Suppose for the sake of contradiction that

$$
\begin{equation*}
\mathcal{L}^{n}(A \cap\{\hat{r}<f \leq \hat{s})=0 . \tag{52}
\end{equation*}
$$

Then

$$
\begin{gather*}
\mathcal{L}^{n}\left(E_{2}\right)=0 \text { and } \tau(x)= \begin{cases}\hat{r} & x \in E_{1} \\
\hat{s}, & x \in E_{3}\end{cases} \\
\nabla \tau(x)=0 \quad \text { a.e. in } A \tag{53}
\end{gather*}
$$

On the other hand min and max of Sobolev functions produce Sobolev functions. Hence τ is Sobolev and the connectedness of A together with (53) implies that $\tau \equiv$ constant. Hence necessarily

$$
\tau \equiv \hat{s}, \mathcal{L}^{n}\left(E_{3}\right)>0
$$

and also $\mathcal{L}^{n}\left(E_{1}\right)=0$. Thus $f>\hat{s}$ a.e. in A. Thus $f \geq \hat{s}$ on ∂A, which contradicts $(48)_{(1)}$.
The proof of Lemma 2.3 is complete.

3 The (Vector) Caffarelli-Córdoba Density Estimate

3.1 Introduction

In this lecture we are interested in entire solutions of

$$
\begin{equation*}
\Delta u-W_{u}(u)=0 \quad, \quad u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \tag{54}
\end{equation*}
$$

$$
(\mathbf{H})\left\{\begin{array}{l}
W \in C^{2}\left(\mathbb{R}^{m} ;[0 \infty),\{W=0\}=\left\{a_{1}, \ldots, a_{N}\right\}\right. \\
W_{u}(u) \cdot u>0 \text { if }|u|>M \\
c_{2}|\xi|^{2} \geq \xi^{T} W_{u u}\left(a_{i}\right) \xi \geq c_{1}|\xi|^{2}, i=1, \ldots, N
\end{array}\right.
$$

Actually we will be interested in minimizing solutions:

Definition 3.1. A function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a minimizing solution of (54) in the sense of De Giorgi if

$$
\begin{gather*}
J(u, \Omega) \leq J(u+v, \Omega), \forall \text { bounded open set } \Omega \subset \mathbb{R}^{n} \text {, and } \forall v \in C_{0}^{1}(\Omega), \\
\text { where } J(u, \Omega)=\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}+W(u)\right) d x \tag{55}
\end{gather*}
$$

Exercise 6: Show that (54) is the Euler-Lagrange of J.

Remark 3.2. We adopt this definition of minimizer as opposed to the standard

$$
\min \int_{\mathbb{R}^{n}}\left(\frac{1}{2}|\nabla u|^{2}+W(u)\right) d x
$$

because it can be shown (Exercises 7 and 8) that for any solution of (54) the following Liouville type estimates hold:

$$
\left\{\begin{array}{l}
J\left(u, B_{r}(0)\right)=o\left(r^{n-2}\right), \text { as } r \rightarrow+\infty, \quad n \geq 3 \Rightarrow u \equiv \text { const. } \tag{56}\\
J\left(u, B_{r}(0)\right)=o(l n r), \text { as } r \rightarrow+\infty, \quad n=2 \Rightarrow u \equiv \text { const. }
\end{array}\right.
$$

Hence for $n>1$ any nontrivial solution of (54) has the property that

$$
\int_{\mathbb{R}^{n}}\left(\frac{1}{2}|\nabla u|^{2}+W(u)\right) d x=\infty
$$

Exercise 7: (The Stress-Energy Tensor)
(i) Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
T_{i j}(u, \nabla u)=u_{x_{i}} \cdot u_{x_{j}}-\delta_{i j}\left(\frac{1}{2}|\nabla u|^{2}+W(u)\right) \quad i, j=1, \ldots, n
$$

Show that

$$
\operatorname{div} T=(\nabla u)^{T} \cdot\left(\Delta u-W_{u}(u)\right)
$$

(ii) Show that

$$
\operatorname{tr} T=\frac{2-n}{2} \sum_{i=1}^{n}\left|u_{x_{i}}\right|^{2}-n W(u)=-n g(u)+|\nabla u|^{2}
$$

where $g(u):=\frac{1}{2}|\nabla u|^{2}+W(u)$.
(iii) Show that

$$
T+g(u) I d=(\nabla u)^{T}(\nabla u) \geq 0
$$

Exercise 8: (Continuation)

Show that

$$
\begin{equation*}
\sum_{i, j} \int_{B_{r}}\left(x^{i} T_{i j}\right)_{x_{j}}=-\int_{B_{r}}\left(\frac{n-2}{2}|\nabla u|^{2}+n W(u)\right) \leq-(n-2) \int_{B_{r}} g(u) \tag{i}
\end{equation*}
$$

(ii) By the divergence theorem

$$
\begin{gathered}
\sum_{i, j} \int_{B_{r}}\left(x^{i} T_{i j}\right)_{x_{j}} d x=r \sum_{i, j} \int_{\partial B_{r}} T_{i j} \nu_{i} \nu_{j}=-r \int_{\partial B_{r}}\left(g(u)-\left|\frac{\partial u}{\partial \nu}\right|^{2}\right) \\
\geq-r \int_{\partial B_{r}} g(u)=-r \frac{d J_{B_{r}}(u)}{d r}
\end{gathered}
$$

(iii) Combining (i),(ii) conclude that

$$
\begin{aligned}
& -(n-2) J_{B_{r}}(u) \geq-r \frac{d J_{B_{r}}(u)}{d r} \\
& \quad \Leftrightarrow \frac{d}{d r}\left(r^{-(n-2)} J_{B_{r}}(u)\right) \geq 0
\end{aligned}
$$

(iv) Hence

$$
J_{B_{r}}(u) \geq c r^{n-2}
$$

Exercise 9:

Combining the $1^{\text {st }}$ equality in (i) with the $2^{\text {nd }}$ in (ii), Exercise 8, derive Pohozaev's identity

$$
\int_{B_{r}}\left(\frac{n-2}{2}|\nabla u|^{2}+n W(u)\right)=r \int_{B_{r}}\left(\frac{1}{2}|\nabla u|^{2}+W(u)-\left|\frac{\partial u}{\partial \nu}\right|^{2}\right)
$$

Remark 3.3. The hypothesis $(\boldsymbol{H})_{(i i)}$ above implies easily the bounds

$$
\begin{equation*}
|u(x)| \leq M, \quad|\nabla u(x)| \leq \tilde{M}, x \in \mathbb{R}^{n} \tag{57}
\end{equation*}
$$

Indeed if $|\{x:|u(x)|>M\}| \neq 0$ we take the truncation $v(x)=\frac{u(x)}{|u(x)|} M$, that clearly has less energy, hence contradicting that u is a miniizer. The gradient bound then follows from linear elliptic theory (Exercise).

3.2 The Basic Estimate

The following estimate indicates the "surface like" nature of minimizers.
Lemma 3.4. Let $W: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be continuous, $W \geq 0$ and assume that $\{W=0\} \neq \varnothing$. Let u be minimizing (assume estimates (57)).

Then there is a constant $\hat{C}_{0}=\hat{C}_{0}(W, M, \tilde{M})$, independent of x_{0} and such that

$$
\begin{equation*}
B_{r}\left(x_{0}\right) \subset \Omega \Rightarrow J\left(u, B_{r}\left(x_{0}\right)\right) \leq \hat{C}_{0} r^{n-1}, \quad r>0 \tag{58}
\end{equation*}
$$

Proof. Note $g(u)=\frac{1}{2}|\nabla u|^{2}+W(u)$ is bounded in Ω and it follows

$$
J\left(u, B_{r}\left(x_{0}\right)\right) \leq C_{1} r^{n} \leq C_{1} r^{n-1} \text { for } n \leq 1
$$

For $r>1$ define the competitor

$$
v(x)=\left\{\begin{array}{l}
a, \quad\left|x-x_{0}\right| \leq r-1 \tag{59}\\
\left(r-\left|x-x_{0}\right|\right) a+\left(\left|x-x_{0}\right|-r+1\right) u(x), \quad r-1<\left|x-x_{0}\right| \leq r \\
u(x), \quad\left|x-x_{0}\right|>r
\end{array}\right.
$$

The definition and the minimizing property of u over balls imply

$$
J\left(u, B_{r}\left(x_{0}\right) \leq J\left(v, B_{r}\left(x_{0}\right)\right)=J\left(v, B_{r}\left(x_{0}\right) \backslash B_{r-1}\left(x_{0}\right)\right) \leq C_{2} r_{0}^{n-1}\right.
$$

3.3 Motivation

We now introduce the density estimate by considering first the motivation behind it that comes from the sharp inference case of minimal surfaces or better minimal partitions. Our argument below is formal.

Consider a minimal surface $\Sigma^{n-1} \subset \mathbb{R}^{n}$. Let $x \in \Sigma^{n-1}$ and consider $B_{r}(x)$ which is partitioned by Σ^{n-1} in two parts D_{r} and D_{r}^{c}.

Let

$$
\begin{equation*}
V(x)=\mathcal{L}^{n}\left(D_{r}\right), \quad A(r)=\mathcal{H}^{n-1}\left(\Sigma^{n-1} \cap B_{r}\right) \tag{60}
\end{equation*}
$$

S_{r} stands for the spherical cup bounding D_{r}, \mathcal{H}^{n-1} for the $(n-1)$ - Hausdorff measure.
Consider the following computation.

$$
\begin{align*}
V(r) & \leq C\left[\mathcal{H}^{n-1}\left(\Sigma^{n-1} \cap B_{r}+\mathcal{H}^{n-1}\left(S_{r}\right)\right]^{\frac{n}{n-1}}, \quad\right. \text { by the isometric ineq. } \\
& \leq C\left[2 \mathcal{H}^{n-1}\left(S_{r}\right)\right]^{\frac{n}{n-1}}, \quad \text { by minimality of } \Sigma^{n-1} \tag{61}\\
& \leq C\left[V^{\prime}(r)\right]^{\frac{n}{n-1}}, \quad \text { by the coarea formula or Fubini }
\end{align*}
$$

From (58) it follows that if $\mu_{0}=V\left(r_{0}\right)>0$, some $\delta>0$, then

$$
\begin{equation*}
V(r) \geq C r^{n}, \quad r \geq r_{0}, \quad C=C(n) \tag{62}
\end{equation*}
$$

The analogy with the diffuse interface is via the identification

$$
\begin{equation*}
A(r)=\int_{B_{r} \cap\{|u-\alpha| \leq \lambda\}} W(u) d x, \quad V(r)=\mathcal{L}^{n}\left(B_{r} \cap\{|u-\alpha|>\lambda\}\right) \tag{63}
\end{equation*}
$$

where $W(a)=0$ and $\lambda>0$ any number such that

$$
\begin{equation*}
d_{0}=\operatorname{dist}(\alpha,\{W=0\} \backslash\{\alpha\}) \geq \lambda \tag{64}
\end{equation*}
$$

3.4 Hypothesis for the Density Estimate

$$
\left(H_{d}\right)\left\{\begin{array}{l}
W \in C\left(\mathbb{R}^{m},[0, \infty)\right), \quad W(\alpha)=0 \\
(i) \underline{0<\alpha<2: W \text { differentiable in a deleted neighborhood of } a} \begin{array}{l}
\frac{d}{d p} W(a+\rho \xi) \geq \alpha c^{*} \rho^{\alpha-1}, \quad \rho \in\left[0, \rho_{0}\right], \quad \forall \xi:|\xi|=1 \\
(i i) \underline{\alpha=2: W \text { is } C^{2} \text { in a neighborhood of } a} \\
C_{2}|\xi|^{2} \geq \xi^{T} W_{u u}(a) \xi \geq C_{1}|\xi|^{2}
\end{array} .
\end{array}\right.
$$

Theorem 3.5. Assume W satisfies $\left(H_{d}\right), \Omega$ open, $n \geq 1, u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ minimizing. Then for any $\mu_{0}>0$ and any $\lambda \in\left(0, d_{0}\right)$ the condition

$$
\begin{equation*}
\mathcal{L}^{n}\left(B_{r_{0}}\left(x_{0}\right) \cap\{|u-\alpha|>\lambda\} \geq \mu_{0}\right. \tag{65}
\end{equation*}
$$

implies

$$
\begin{equation*}
\mathcal{L}^{n}\left(B_{r}\left(x_{0}\right) \cap\{|u-\alpha|>\lambda\}\right) \geq C r^{n}, \quad r \geq r_{0} \tag{66}
\end{equation*}
$$

as long as $B_{r}\left(x_{0}\right) \subset \Omega, C=C\left(W, \mu_{0}, \lambda, r_{0}, M, \tilde{M}\right)$.

Exercise 10: Utilizing Lemma 3.4 show that the validity of the theorem for one value of $\lambda \in\left(0, d_{0}\right)$ implies its validity for all $\lambda^{\prime} \in\left(0, d_{0}\right)$.

Exercise 11: Assume $\{W=0\}=\left\{a_{1}, a_{2}\right\}$, and assume that $\left(H_{d}\right)$ holds. Then given $0<\theta<\left|\alpha_{1}-\alpha_{2}\right|$, the condition

$$
\begin{equation*}
\mathcal{L}^{n}\left(B_{1}\left(x_{0}\right) \cap\left\{\left|u-a_{1}\right| \leq \theta\right\}\right) \geq \mu_{0}>0 \tag{67}
\end{equation*}
$$

implies the estimate:

$$
\begin{equation*}
\mathcal{L}^{n}\left(B_{r}\left(x_{0}\right) \cap\left\{\left|u-a_{1}\right| \leq \theta\right\}\right) \geq C r^{n} \tag{68}
\end{equation*}
$$

for $r \geq 1$ as long as $B_{r} \subset \Omega$.

Proof. STEP I : The Identity
We recall the polar form introduced in (30). For $u(\cdot) \in W^{1,2}\left(B_{r} ; \mathbb{R}^{m}\right) \cap L^{\infty}\left(B_{r} ; \mathbb{R}^{m}\right), \quad B_{r}=$ $\left\{\left|x-x_{0}\right|<r\right\}$,

$$
u(x)=a+q^{u}(x) \vec{n}^{u}(x)
$$

where

$$
\begin{aligned}
& q^{u}(x)=|u(x)-a|, \quad \vec{n}^{u}(x)=\frac{u(x)-a}{|u(x)-a|}, \quad \text { if } u(x) \neq a \\
& q^{u} \in W^{1,2}\left(B_{r}\right) \cap L^{\infty}\left(B_{r}\right), \quad \nabla \stackrel{\rightharpoonup}{n}^{u} \text { measurable, } \quad q^{u}\left|\nabla \vec{n}^{u}\right| \in L^{2}\left(B_{r}\right)
\end{aligned}
$$

$$
\begin{equation*}
\int_{B_{r}}|\nabla u|^{2} d x=\int_{B_{r}}\left|\nabla q^{u}\right|^{2} d x+\int_{B_{r}}\left(q^{u}\right)^{2}\left|\nabla \vec{n}^{u}\right|^{2} d x \tag{69}
\end{equation*}
$$

As in section 2 we consider variations where only the radial part q^{u} is modified while \vec{n}^{u} is kept fixed:

$$
\begin{equation*}
h=a+q^{h \stackrel{\rightharpoonup}{n}}(x), \quad \sigma=a+q^{\sigma \stackrel{\rightharpoonup}{n}^{u}}(x) \tag{70}
\end{equation*}
$$

where

$$
\begin{equation*}
q^{h} \in W^{1,2}\left(B_{r}\right) \cap L^{\infty}\left(B_{r}\right), \quad q^{h} \geq 0 \tag{72}
\end{equation*}
$$

with a suitable radial C^{1} map, with

$$
\begin{equation*}
q^{h} \geq q^{u} \quad \text { on } \quad \partial B_{r} \tag{73}
\end{equation*}
$$

(69) with $u=\sigma$ yields

$$
\begin{equation*}
\int_{B_{r}}|\nabla \sigma|^{2} d x=\int_{B_{r}}\left|\nabla q^{\sigma}\right|^{2} d x+\int_{B_{r}}\left(q^{\sigma}\right)^{2}\left|\nabla \vec{n}^{u}\right|^{2} d x \tag{74}
\end{equation*}
$$

Thus we derive the identity:

$$
\begin{gather*}
\frac{1}{2} \int_{B_{r}}\left(\left|\nabla q^{u}\right|^{2}-\left|\nabla q^{\sigma}\right|^{2}\right) d x= \\
J_{B_{r}}(u)-J_{B_{r}}(\sigma)+\frac{1}{2} \int_{B_{r}}\left(\left(q^{\sigma}\right)^{2}-\left(q^{u}\right)^{2}\right)\left|\nabla \vec{n}^{u}\right|^{2} d x+\int_{B_{r}}(W(\sigma)-W(u)) d x \tag{75}\\
\leq \int_{B_{r}}(W(\sigma)-W(u)) d x
\end{gather*}
$$

where in deriving the last inequality we used that $q^{\sigma} \leq q^{u}$ and the minimizing property of u. Notice the similarity of (75) with (61).

STEP II: The isoperimetric estimate
Recall the Sobolev inequality

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}|f|^{\frac{n-1}{n}} d x\right)^{\frac{n-1}{n}} \leq C(n) \int_{\mathbb{R}^{n}}|\nabla f| d x, \quad \forall f \in W^{1,2}\left(\mathbb{R}^{n}\right), \quad n \geq 2 \tag{76}
\end{equation*}
$$

with ρ_{0} as in $\left(H_{d}\right)$, we define the cut-off

$$
\beta=\min \left\{q^{u}-q^{\sigma}, \lambda\right\} \text { in } B_{r}, \text { with } \lambda>0, \text { small } \lambda \leq \rho_{0}
$$

and apply (76) to β^{2}

$$
\begin{gather*}
\left(\int_{B_{r}} \beta^{\frac{2 n}{n-1}} d x\right)^{\frac{n-1}{n}}=\left(\int_{B_{r}}\left(\beta^{2}\right)^{\frac{n}{n-1}} d x\right)^{\frac{n-1}{n}} \\
\leq C(n) \int_{B_{r}}\left|\nabla\left(\beta^{2}\right)\right| d x \leq 2 C(n) \int_{B_{r} \cap\left\{q^{u}-q^{\sigma} \leq \lambda\right\}}|\nabla \beta||\beta| d x \tag{77}
\end{gather*}
$$

where we have utilized that $\beta=0$ on ∂B_{r} and $\nabla \beta=0$ a.e on $q^{u}-q^{\sigma}>\lambda$.
By Young

$$
\begin{align*}
& \quad\left(\int_{B_{r}} \beta^{\frac{2 n}{n-1}} d x\right)^{\frac{n-1}{n}} \leq 2 C(n) \int_{B_{r} \cap\left\{q^{u}-q^{\sigma} \leq \lambda\right\}}|\nabla \beta||\beta| d x \\
& \leq C(n) A \int_{B_{r} \cap\left\{q^{u}-q^{\sigma} \leq \lambda\right\}}|\nabla \beta|^{2} d x+\frac{C(u)}{A} \int_{B_{r} \cap\left\{q^{u}-q^{\sigma} \leq \lambda\right\}} \beta^{2} d x \tag{78}\\
& \leq C(n) A \int_{B_{r}}\left|\nabla\left(q^{u}-q^{\sigma}\right)\right|^{2} d x+\frac{C(u)}{A} \int_{B_{r} \cap\left\{q^{u}-q^{\sigma} \leq \lambda\right\}}\left(q^{u}-q^{\sigma}\right)^{2} d x
\end{align*}
$$

Noting the identity

$$
\begin{equation*}
\left|\nabla\left(q^{u}-q^{\sigma}\right)\right|^{2}=\left|\nabla q^{u}\right|^{2}-\left|\nabla q^{\sigma}\right|^{2}-2 \nabla q^{\sigma}\left(\nabla q^{u}-\nabla q^{\sigma}\right) \tag{79}
\end{equation*}
$$

we can bound the right - hand side of (78) utilizing the identity (75).

$$
\begin{gather*}
\left(\int_{B_{r}} \beta^{\frac{2 n}{n-1}} d x\right)^{\frac{n-1}{n}} \leq 2 C(n) A\left(\int_{B_{r}}(W(\sigma)-W(u)) d x-\int_{B_{r}} \nabla q^{\sigma}\left(\nabla q^{u}-\nabla q^{\sigma}\right) d x\right) \tag{80}\\
+\frac{C(u)}{A} \int_{B_{r} \cap\left\{q^{u}-q^{\sigma} \leq \lambda\right\}}\left(q^{u}-q^{\sigma}\right)^{2} d x
\end{gather*}
$$

Assuming that $q^{h} \in W^{1,2}\left(B_{r}\right) \cap L^{\infty}\left(B_{r}\right)$ can be chosen so that

$$
\begin{equation*}
q^{h}=0 \quad \text { on } \quad B_{r-T}, \quad \text { some fixed } \quad T>0 \tag{81}
\end{equation*}
$$

and this

$$
q^{\sigma} \text { on } B_{r-T} \Leftrightarrow \sigma=a \text { on } B_{r-T}
$$

we can estimate

$$
\left(\int_{B_{r}} \beta^{\frac{2 n}{n-1}} d x\right)^{\frac{n-1}{n}} \geq\left(\int_{B_{r-T} \cap\left\{q^{u}>\lambda\right\}} \beta^{\frac{2 n}{n-1}} d x\right)^{\frac{n-1}{n}} \geq \lambda^{2} \mathcal{L}^{n}\left(B_{r-T} \cap\left\{q^{u}>\lambda\right\}\right)^{\frac{n-1}{n}}
$$

and obtain from (80) that

$$
\begin{gather*}
\lambda^{2} \mathcal{L}^{n}\left(B_{r-T} \cap\left\{q^{u}>\lambda\right\}\right)^{\frac{n-1}{n}} \\
\leq 2 C(n) A\left(\int_{B_{r}}(W(\sigma)-W(u)) d x-\int_{B_{r}} \nabla q^{\sigma}\left(\nabla q^{u}-\nabla q^{\sigma}\right) d x\right) \tag{82}\\
+\frac{C(n)}{A} \int_{B_{r} \cap\left\{q^{u}-q^{\sigma} \leq \lambda\right\}}\left(q^{u}-q^{\sigma}\right)^{2} d x
\end{gather*}
$$

Exercise 12: $(\alpha<2)$
Consider the O.D.E

$$
\left\{\begin{array}{l}
q^{\prime}=\frac{2}{2-\alpha} C^{\frac{\alpha}{2}} q^{\frac{\alpha}{2}}, \quad q^{\prime \prime}=\frac{2 \alpha}{(2-\alpha)^{2}} C^{\alpha} q^{\alpha-1} \\
q(0)=0
\end{array}\right.
$$

Show that it has the family of nontrivial solutions

$$
q(s)=\left\{\begin{array}{l}
C^{\frac{\alpha}{2-\alpha}} S^{\frac{2}{2-\alpha}}, \quad s>0 \\
0, \quad s \leq 0
\end{array}\right.
$$

Let $\tilde{q}(s)=C s^{\frac{2}{2-\tau}}, \tilde{q}(s)=0$ for $s \leq 0, \tau=\max \{\alpha, 1\}$
Show that $q^{h}(x)=\tilde{q}(|x|-(r-T))$ is Sobolev.

Notice that $q^{\prime \prime}(0)$ is finite, $q^{\prime}(0)=0$.

STEP III: The case $0<\alpha<2$
A. We recall $\left(H_{d}\right)(\mathrm{i})$, which is modeled after $W(u) \sim|u-a|^{2}$ for $u \sim a$. The validity of (57) needs some attention here and will be discussed later.

We estimate the first-hand side of (82).
We begin with B_{r-T}. Since $q^{\sigma}=0$ on B_{r-T}, the first-hand side reduces to.

$$
\begin{align*}
& I=-2 C(n) A \int_{B_{r-T}} W(u) d x+\frac{C(n)}{A} \int_{B_{r-T} \cap\left\{q^{u} \leq \lambda\right\}}\left(q^{u}\right)^{2} d x \tag{83}\\
\leq & -2 C(n) A \int_{B_{r-T} \cap\left\{q^{u} \leq \lambda\right\}} W(u) d x+\frac{C(n)}{A} \int_{B_{r-T} \cap\left\{q^{u} \leq \lambda\right\}}\left(q^{u}\right)^{2} d x
\end{align*}
$$

Exercise 13:

Assume $\lambda \leq \rho_{0}, \rho_{0}$ as on $\left(H_{d}\right)$. Then there exists $A_{0}>0$ independent of r, such that

$$
\begin{equation*}
I \leq-\frac{C(n)}{2} A \int_{B_{r-T} \cap\left\{q^{u} \leq \lambda\right\}} W(u) d x, \quad \text { for } \quad A>A_{0}=\sqrt{2 \lambda^{2-\alpha} / 3 C^{*}} \tag{84}
\end{equation*}
$$

(Utilize lower bound in $\left(H_{d}\right)(\mathrm{i})$).
B. Next we consider the right-hand side of (82) on $B_{r} \backslash B_{r-T}$

Set

$$
\begin{gathered}
I_{1}=2 C(n) A \int_{B_{r} \backslash B_{r-T}}(W(\sigma)-W(u)) d x+\frac{C(n)}{A} \int_{\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{u}-q^{\sigma} \leq \lambda\right\}}\left(q^{u}-q^{\sigma}\right)^{2} d x \\
I_{2}=-2 C(n) A \int_{B_{r} \backslash B_{r-T}} \nabla q^{\sigma}\left(\nabla q^{u}-\nabla q^{\sigma}\right) d x
\end{gathered}
$$

Assume $\lambda \leq \min \left\{\rho_{0}, 1\right\}$. Then there exists a constant $\tilde{C}>0$ independent of r, such that

$$
\begin{gather*}
I_{1} \leq \tilde{C} A \mathcal{L}^{n}\left(\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{u}>\lambda\right\}\right)+\frac{\tilde{C}}{A} \int_{\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{u} \leq \lambda\right\}} W(u) d x \tag{85}\\
A>0
\end{gather*}
$$

To see this we proceed by splitting the integration over $B_{r} \backslash B_{r-T}$ into integrations over $\left\{q^{u} \leq \lambda\right\}$ and $\left\{q^{u}>\lambda\right\}$

From $q^{\sigma} \leq q^{u}, q^{u} \leq \lambda \leq \rho_{0}$ by the monotonicity of W near $u=a$

$$
\int_{B_{r} \backslash B_{r-T}}(W(\sigma)-W(u)) d x \leq d x \leq 0
$$

Thus

$$
\int_{B_{r} \backslash B_{r-T}}(W(\sigma)-W(u)) d x \leq \mathcal{W}_{M} \mathcal{L}^{n}\left(\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{u}>\lambda\right\}\right)
$$

For the $2^{\text {nd }}$ term we can utilize the lower bound in $\left(H_{d}\right)_{(i)}$:
In $q^{\sigma} \leq q^{u} \leq \lambda \leq \min \left\{\rho_{0}, 1\right\}$

$$
W(u) \geq C^{*}\left(q^{u}\right)^{\alpha} \geq C^{*}\left(q^{u}-q^{\sigma}\right)^{\alpha} \geq C^{*}\left(q^{u}-q^{\sigma}\right)^{2}
$$

hence

$$
\int_{\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{u} \leq \lambda\right\}}\left(q^{u}-q^{\sigma}\right)^{2} d x \leq \frac{1}{C^{*}} \int_{\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{u} \leq \lambda\right\}} \mathcal{W}(u) d x
$$

and (84) is established with $\tilde{C}=C(n) \max \left\{\frac{1}{C^{*}}, 2 \mathcal{W}_{M}\right\}$.
Next we take up $I_{2}, \lambda \leq \min \left\{\rho_{0}, 1\right\}$.
We will show that there exists $\hat{C}>0$, independent of r, but depending on M, T, such that:

$$
\begin{equation*}
I_{2} \leq \hat{C} A \mathcal{L}^{n}\left(\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{u}>\lambda\right\}\right)+\hat{C} A \int_{\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{u} \leq \lambda\right\}} W(u) d x \tag{86}
\end{equation*}
$$

We proceed as follows. Let $q^{h}(x)$ as in Exercise 12

$$
I_{2}=-2 C(n) A \int_{\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{h}<q^{u}\right\}} \nabla q^{\sigma}\left(\nabla q^{u}-\nabla q^{\sigma}\right) d x-2 C(n) A \int_{\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{h} \leq q^{u}\right\}} \nabla q^{\sigma}\left(\nabla q^{u}-\nabla q^{\sigma}\right) d x
$$

(trivially, since $q^{\sigma}=\min \left\{q^{h}, q^{u}\right\}$)
$=-2 C(n) A \int_{\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{h}<q^{u}\right\}} \nabla q^{h}\left(\nabla q^{u}-\nabla q^{h}\right) d x=2 C(n) A \int_{\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{h}<q^{u}\right\}} \Delta q^{h}\left(q^{u}-q^{h}\right) d x$
We now split the integral $I_{2}=I_{2}^{+}+I_{2}^{-}$where I_{2}^{+}, I_{2}^{-}correspond to the integration over
$\left\{q^{u}>\lambda\right\}$ and $\left\{q^{u} \leq \lambda\right\}$.
Then we have the estimates

$$
\begin{gathered}
I_{2}^{+} \leq 2 C A C_{M} M \mathcal{L}^{n}\left(\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{u}-\lambda\right\}\right) \\
I_{2}^{-} \leq 2 C A C_{1} \int_{\left(B_{r} \backslash B_{r-T}\right) \cap\left\{q^{h}<q^{u}\right\} \cap\left\{q^{u} \leq \lambda\right\}}\left(q^{h}\right)^{\tau-1}\left(q^{u}-q^{h}\right) d x
\end{gathered}
$$

In the $1^{\text {st }}$ we take $\Delta q^{h} \leq C_{M}$. In the $2^{\text {nd }}$ we utilize $\Delta q^{h} \leq C_{1}\left(q^{h}\right)^{\tau-1}, C_{M}$ and C_{1} constants bounded as as $\alpha \rightarrow 0$. Moreover in the $2^{\text {nd }}$ term we have:

$$
\left(q^{h}\right)^{\tau-1}\left(q^{u}-q^{h}\right) \leq\left(q^{u}\right)^{\tau-1}\left(q^{u}-q^{h}\right) \leq\left(q^{u}\right)^{\alpha} \leq \frac{1}{C^{*}} W(u)
$$

and so (86) is established.
Recalling (63) and collecting all the estimates above, we have for fixed $A>A_{0}$:

$$
\begin{gathered}
\lambda^{2}(V(r-T))^{\frac{n-1}{n}}+C A A(r-T) \\
\leq(\tilde{C}+\hat{C}) A(V(r)-V(r-T))+\left(\frac{\tilde{C}}{A}+\hat{C} A\right)(A(r)-A(r-T))
\end{gathered}
$$

and rearranging

$$
\begin{equation*}
C(\lambda)\left((V(r-T))^{\frac{n-1}{n}}+A(r-T)\right) \leq(V(r)-V(r-T))+(A(r)-A(r-T)) \tag{87}
\end{equation*}
$$

where

$$
C(\lambda)=\frac{\min \left\{\lambda^{2}, C A\right\}}{\max \left\{(\tilde{C}+\hat{C}) A, \frac{\hat{C}}{A}+\hat{C} A\right\}}
$$

From this difference scheme we obtain (Exercise 12)

$$
\begin{equation*}
V(k T)+A(k T) \geq C k^{n}, \quad \text { for } k \geq k_{0}, \quad k \text { integer } \tag{88}
\end{equation*}
$$

utilizing

$$
\begin{equation*}
A(k T) \leq \hat{C}_{0}(k T)^{n-1} \quad(\text { by Lemma } 3.4) \tag{89}
\end{equation*}
$$

we conclude the proof of Theorem 3.5 for $0<a<2$.

Remark 3.6.

1) The case $\alpha=2$ is more involved since there is no comparison function q^{h} that vanishes on ∂B_{r-T}. Instead one has to resort to the linear equation

$$
\left\{\begin{array}{l}
\Delta \phi=c_{0} \phi \text { in } B_{r} \\
\phi=1
\end{array}\right.
$$

and construct a comparison function that is exponentially small on B_{r-T}, T large,

$$
q^{h} \leq M e^{-C_{1} T} \text { on } B_{r-T}
$$

We refer to [1].
2) For $0<\alpha<1$ the L^{∞} gradient bound is not appropriate since $u \in C_{\text {loc }}^{\beta}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ for some $\beta \in(0,1)$. The only prerequisite for the proof on the case $\alpha \in(0,2)$ is Lemma 3.4 that can be established with a different proof ([1]).

References

[1] Nicholas D. Alikakos, Giorgio Fusco, Panayotis Smyrnelis: Elliptic Systems of Phase Transition Type, Progress in Nonlinear Differential Equations and Their Applications (2018), Birkhauser

